A Lattice based Nearest Neighbor Classifier for Anomaly Intrusion Detection
نویسندگان
چکیده
As networking and communication technology become more widespread, the quantity and impact of system attackers have been increased rapidly. The methodology of intrusion detection (IDS) is generally classified into two broad categories according to the detection approaches: misuse detection and anomaly detection. In misuse detection approach, abnormal system behavior is defined at first, and then any other behavior is defined as normal behavior. The main goal of the anomaly detection approach is to construct a model representing normal activities. Then, any deviation from this model can be considered as an anomaly, and recognized to be an attack. Recently much more attention is paid to the application of lattice theory in different fields. In this work we propose a lattice based nearest neighbor classifier capable of distinguishing between bad connections, called attacks, and good normal connections. A new nonlinear valuation function is introduced to tune the performance of the proposed model. The performance of the algorithm was evaluated by using KDD Cup 99 Data Set, the benchmark dataset used by Intrusion detection Systems researchers. Simulation results confirm the effectiveness of the proposed method.
منابع مشابه
Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملImproved Intrusive Process Detection Via Text Categorization
This paper compares the efficacy of two anomaly detection classifiers with respect to the classification of processes as either intrusive or non-intrusive. To the task of process classification, both classifiers treat processes as system call sequences, encode those system call sequences as text documents, and apply the k-nearest neighbor text categorization method to classify the processes. In...
متن کاملIntrusion Detection using Text Processing Techniques with a Binary-Weighted Cosine Metric
This paper introduces a new similarity measure, termed Binary Weighted Cosine (BWC) metric, for anomaly-based intrusion detection schemes that rely on using sequences of system calls. The new similarity measure considers both the number of shared system calls between two processes as well as frequencies of those calls. The k nearest neighbor (kNN) classifier is used to categorize a process as e...
متن کاملEnhance IDS False Alarm Filtering Using KNN Classifier
Intrusion detection is one of the important aspects in computer security. Many commercial intrusion detection systems (IDSs) are available and are widely used by organizations. However, most of them suffer from the problem of high false alarm rate, which added heavy workload to security officers who are responsible for handling the alarms. In this paper, we propose a new method to reduce the nu...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014